
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Constraint-Based Combinatorial Optimization for

Smart Outfit Planning with Dynamic Wardrobe

Management

Natalia Desiany Nursimin - 13523157

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: nataliadesianyy@gmail.com, 13523157@std.stei.itb.ac.id

Abstract—Choosing daily outfits has become an increasingly

time-consuming and challenging decision-making task for many

individuals, especially when considering factors such as weather

conditions, occasion appropriateness, and availability of clean

clothing items. Despite owning wardrobes filled with garments,

people often struggle with deciding what to wear each day and

overlook the numerous outfit combinations that can be created

with their existing clothes. To address this challenge, this paper

presents an intelligent outfit planning system based on

constraint-based combinatorial optimization integrated with

dynamic wardrobe management to assist users in efficiently

selecting appropriate clothing combinations for daily wear. The

system models outfit selection as a combinatorial problem

grounded in combinatorics theory, where clothing items are

represented as variables with attributes such as category, color,

and formality. Constraints include event type, weather

conditions, and user-specific preferences, allowing the system to

eliminate unsuitable combinations and generate all viable outfit

combinations through the usage of combinatoric techniques and

efficient constraint satisfaction algorithms. The wardrobe

database is dynamically updated to reflect real-time changes,

including laundry cycles, newly added garments, and discarded

items, ensuring accurate and relevant recommendations. By

utilizing the principles of combinatorics and constraint

optimization, the system aims to deliver highly personalized,

context-aware outfit suggestions that promote style diversity and

maximize wardrobe utility. This paper aims to demonstrate how

combinatorial techniques combined with constraint-based

optimization can be effectively applied to solve real-world

problems, particularly in automating personalized decision-

making processes such as daily outfit planning.

Keywords—combinatorics; outfit planning; decision making;

wardrobe optimization; constraint satisfaction

I. INTRODUCTION

In everyday life, people are constantly faced with making

countless decisions, both major and minor. Among these, one

surprisingly common and often frustrating dilemma people

face is the simple yet persistent question: “What should I wear

today?” Although it may seem trivial at first glance, choosing

an outfit is far from a simple task, especially when considering

multiple factors such as current weather conditions (whether it

is sunny, rainy, or windy), the nature of the day’s activities or

events, and one’s personal comfort and style preferences. The

seemingly mundane task of selecting clothing can take up a

significant amount of time and mental energy, particularly

when individuals find themselves staring at a wardrobe full of

options, yet feeling as though they have nothing suitable to

wear.

This paradox of owning many clothes but still struggling to

find something to wear is a widespread problem experienced

by many people on a daily basis. It is a classic example of

decision fatigue, where the mental burden of having to choose

from too many options results in people being overwhelmed,

frustrated and indecisive. In many cases, people default to a

few familiar outfits out of habit or convenience, leaving the

majority of their wardrobe untouched. This leads to

dissatisfaction with their personal style and, often, to the

frequent purchase of new clothes in an attempt to “fix” the

problem. Unfortunately, in most cases this often just results in

the same cycle repeating itself: the new additions go

underutilized, and the daily dilemma and underutilization

persists.

The effects that emerge from this cycle not only contribute
significantly to individual stress but also to broader issues such
as excessive consumption and fashion waste. When individuals
repeatedly purchase new clothes without effectively utilizing
what they already own, the sustainability of their consumption
habits comes into question. This contributes to the growing
environmental impact of the fashion industry, which is already
a significant source of global waste, increased pollution and
resource depletion. Thus, making the issue of solving the outfit
planning dilemma not just a matter of convenience, but also a
very important matter that ties into responsible consumption,
ecological awareness and environmental sustainability.

Moreover, the sense of frustration and dissatisfaction that
stems from daily outfit stress can also negatively impact self-
image and confidence. Clothing is not as simple as just wearing
clothes but also a form of self-expression, and when
individuals feel limited or uninspired by what they wear, it may
influence their mood and overall sense of identity. Therefore, a

../../Downloads/nataliadesianyy@gmail.com
mailto:13523157@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

system that can intelligently assist in generating outfit
combination options is very important, as it not only reduces
decision fatigue but can also enhance daily wellbeing and self-
esteem.

While existing fashion recommendation systems focus
primarily on style matching and trend analysis, few approaches
have systematically addressed the combinatorial nature of
outfit planning or incorporated dynamic wardrobe state
management. Current solutions in the market typically rely on
predefined style rules, color theory, or collaborative filtering
based on user preferences and fashion trends. However, these
systems often fail to consider the practical constraints that real
users face, such as weather conditions, occasion
appropriateness, and most importantly, the actual availability of
clothing items in their personal wardrobes. Furthermore,
existing approaches do not account for the temporal dynamics
of wardrobe management, such as laundry cycles, considering
whether clothing items are clean or dirty. This presents an
opportunity to develop a more comprehensive approach to
automated outfit planning that considers both the mathematical
structure of the problem and constraints that users encounter
daily.

It is within this context that the application of mathematical
principles, particularly from combinatorics, becomes highly
relevant. Combinatorics offers a way to systematically explore
all possible combinations of clothing items, helping to uncover
all possible outfit pairings that may have never even been
considered. With even just a small number of items, there are
lots of possible combinations someone could style something.
However, this process would become very inefficient and slow
if done manually, especially if there are a large number of
clothing options. Thus, this is where computational assistance
comes in handy.

From a combinatorics perspective, given n tops, m bottoms,
and k shoes, there exist n × m × k possible outfit combinations.
However, constraints significantly reduce this number. For
instance, implementing weather and occasion constraints might
significantly reduce a lot of these possible combinations.

 By designing a program that incorporates constraint-based
combinatorial optimization, creating an automated system can
be done very quickly. The program can filter out impractical or
inappropriate combinations while highlighting those that align
with the user's preferences and context. For example, the
system can rule out wearing tank tops on a rainy day or suggest
more formal combinations for work-related events. By
adjusting to each individual’s needs, the system's
recommendations could prove to be very useful.

In the long term, it could also transform how people
interact with their wardrobes. It encourages conscious usage by
helping individuals make the most of what they already own,
and reduces the perceived need for constant shopping.
Ultimately, the use of combinatorial techniques and constraint-
based optimization possesses a huge potential to offer a
powerful solution to help make people's daily lives easier and
encourage sustainable living.

II. THEORETICAL FRAMEWORK

A. Fundamentals of Combinatorics in Outfit Planning

Combinatorics is a fundamental branch of mathematics that
deals with counting, arrangement, and selection of objects,
often without the need to explicitly list all possible
configurations. In the context of smart outfit planning,
combinatorial theory provides the mathematical basis for
systematically exploring and quantifying the possible
combinations of clothing items, filtering them based on
specified conditions, and selecting optimal results using
constraint-based approaches.

In the context of implementing a smart wardrobe planning
system, we can implement the use of combinatorics by treating
each clothing item as an element in a finite set. Each outfit can
be modeled as a selection of one item from each category, such
as top, bottom, outerwear, shoes, and accessories. The total
number of outfits then corresponds to the number of possible
combinations formed from these subsets.

For example, a basic wardrobe structure can be
mathematically represented as follows:

W = {T, B, O, S, A} is a wardrobe where:

• T = {t₁, t₂, ..., tₙ} is the set of tops

• B = {b₁, b₂, ..., bₘ} is the set of bottoms

• O = {o₁, o₂, ..., oₖ} is the set of outerwear

• S = {s₁, s₂, ..., sₚ} is the set of shoes

• A = {a₁, a₂, ..., aᵣ} is the set of accessories

We can calculate the number of possible outfit combinations
excluding the use of constraints using combinatorics. For
example, a user owns 5 tops, 4 bottoms, 3 outerwears, 2 shoes,
and 3 accessories, the number of possible outfit combinations
excluding the use of constraints is:

Total Combinations = T × B× O × S × A

 = 5 × 4 × 3 × 2 × 3

 = 360

B. Rule of Product and Rule of Sum

The basic principles of combinatorics lie in two primary
counting rules, which consists of the rule of product and the
rule of sum. The rule of product is used when there are multiple
independent choices to make. For instance, selecting a top (5
choices), a bottom (4 choices), and a pair of shoes (2 choices)
results in 5 × 4 × 2 = 40 possible combinations. Each step is
independent, and every option in one category can be paired
with every option in the next.

The rule of sum applies when making one choice among
multiple categories. For example, if an outfit includes either a
jacket (3 options) or a hoodie (2 options), and not both, then
there are 3 + 2 = 5 options that are available for that part of the
outfit.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

C. Permutations

 Permutations are used when the order of selection matters.
Permutation can be defined as an arrangement of elements that
requires a specific order and position. Permutation can be
expressed as the following:

Where:

• n = total number of items

• r = number of items selected in order

• ! denotes factorial (for example 4! = 4 x 3 x 2 x 1

= 24)

• r  n,

D. Combinations

Combinations are selections of items from a larger set,

where the order of selection does not matter. In contrast to

permutations, combinations are concerned only with the

elements chosen, not the sequence in which they appear.

Combination can be expressed as the following:

Where:

• n = the total number of elements in the set

• r = the number of elements selected

• n! = the factorial of n

E. Repetition and Multisets

In standard combinations, each item can only be selected

once. However, in real-world outfit planning scenarios, certain

clothing items can be selected multiple times within a single

outfit, such as accessories. Combinations with repetition occur

when we are allowed to choose the same item multiple times

from a given set. Unlike regular combinations where each

element can only be picked once, repetition allows for

multiple selections of the same type of item. The number of

ways to choose r items from n distinct types with repetition

allowed is given by the formula:

Where:

• n = number of distinct item types

• r = number of items selected

Multisets are collections of objects where repetition of

elements is allowed. In the context of outfit planning, a

multiset represents a selection of clothing items where the

same type of item can appear multiple times. The number of

unique arrangements for a multiset of n items, with repetitions

of n1,n2,..,nk. The number of unique arrangements for a

multiset of n items can be calculated using the formula below:

F. Constraint-Based Combinatorics

Constraint-based combinatorics is the integration of logical

and contextual constraints into the combinatorial process. In

this approach, constraints are applied during the generation

phase, allowing only valid combinations to be considered from

the outset. As a result, the system avoids generating

impractical or inappropriate combinations, making the process

more efficient and relevant. Constraints are generally divided

into two categories, which are hard and soft constraints.

Hard constraints are strict, non-negotiable rules that must

be satisfied for a combination to be considered valid. If even

one hard constraint is violated, the combination is immediately

seen as invalid and will be discarded. In the context of outfit

planning, examples of hard constraints include:

• Weather compatibility: No sandals on rainy days

• Occasion requirements: Formal events require formal

shirts

Soft constraints are preference-based guidelines. While it

is ideal to satisfy them, violating a soft constraint does not

make a solution invalid, but may reduce the desirability of the

recommendation. In the the context of outfit planning, soft

constraints may include:

• Color harmony: Compatibility of outfit colors

• Color preferences: Preferring bright colors over dark

ones

G. Inclusion-Exclusion Principle

The inclusion-exclusion principle is a fundamental concept

in combinatorics used to count the number of elements in the

union of multiple sets, especially when these sets overlap.

Without this principle, counting overlapping sets may lead to

double-counting. This principle can be expressed as the

following:

Where:

• ∣A∣ = Number of elements in set A

• |B∣ = Number of elements in set B

• ∣A∩B∣ =Number of elements that are in both A and B

III. DISCUSSION

The daily decision of selecting an outfit, while seemingly
trivial, causes a repetitive combinatorial challenge influenced
by dynamic and contextual constraints. Despite owning a wide
variety of clothing items, individuals often struggle to create
appropriate combinations due to factors such as weather
conditions, occasion formality, and the real-time availability of
clean garments. This section presents an in-depth discussion on
the application of constraint-based combinatorial optimization

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

as a rigorous mathematical approach to address this issue. The
following subsections explore the practical implementation of
this framework within the context of smart wardrobe planning:

1. Combinatorial Representation of the Wardrobe

 The foundation of this system lies in representing
each clothing category as a finite, disjoint set of items. A
wardrobe is defined as the following expression:
W = {T, B, O, S, A}, where:

• T = set of tops

• B = set of bottoms

• O = set of outerwear

• S = set of shoes

• A = set of accessories

Outfit generation follows the Rule of Product. If a user has
20 tops, 15 bottoms, and 10 shoes, the number of basic
outfit combinations is:

• Basic_Outfits = |T| × |B| × |S| = 20 × 15 × 10 = 3,000

• With outerwear included, possible combinations
become = |T| × |B| × |O| × |S| = 20 × 15 × 12 × 10 =
36,000

This illustrates the exponential growth of possibilities and
justifies the use of combinatorial theory for optimization.

2. Constraint-Based Filtering of Combinations

 Rather than evaluating all combinations and then
eliminating invalid ones, the system incorporates constraint
satisfaction directly into the generation process. Each outfit
combination is filtered using the conjunction of hard
constraints:

• Availability: Only includes items marked as available

• Weather Compatibility: Ensures all items are suitable
for the specified weather category, for example not
using sandals in cold weather.

• Occasion Formality: Filters combinations that meet
minimum formality thresholds for different event
types

This constraint-based approach can be denote as the
following expression:

Valid_Outfits = |{(t, b, s) ∈ T × B × S | C(t, b, s) = True}|

The function C(t, b, s) represents a constraint function that
returns True if the outfit satisfies all required constraints
and False if otherwise. This constraint-based approach
helps greatly reduces computational time while ensuring
practical relevance of recommendations.

3. Advanced Combinatorics for Accessory Integration

 Accessories follow a different combinatorial rule set,
as multiple accessories can be worn simultaneously. This

creates a combination without repetition scenario. For r
accessories, the number of ways to select k accessories is:

For example, with r = 15 accessories:

• No accessories: C(15,0) = 1 (empty set)

• Single accessory: C(15,1) = 15

• Double accessories: C(15,2) = 105

• Triple accessories: C(15,3) = 455

Total accessory combination: 1+ 15 + 105 + 455 = 576

When combined with 3,000 basic outfit possibilities
(top, bottom, shoes):

Total_Complete_Outfits = 3,000 × 576 = 1,728,000
possible combinations

To help manage the number of possible
combinations, the system applies selective accessory
integration, where accessories are only added to the
highest-scoring base combinations, balancing
computational efficiency with recommendation
diversity.

4. Sequential Constraint Application for Efficiency

 In order to help enhance computational efficiency of
the system, constraints are assigned in the following
optimized sequence:

• Stage 1: Availability Filtering → eliminates
unavailable items from each category

• Stage 2: Weather Filtering → narrows
combinations to seasonally appropriate items

• Stage 3: Occasion Filtering → applies formality
logic (e.g., average formality score ≥ 7 for formal
events)

Each stage aims to progressively reducs the
combinatorial search space to help decrease the
amount of possible combinations.

5. Temporal Constraints and Dynamic Availability

 The wardrobe's availability is time-dependent, as it
reflects real-world dynamics. Each item i has an availability
function A(t, i).Time-constrained wardrobe sets is express
as:

T(t) = {i ∈ T | A(t,i) = True}, B(t), O(t), S(t) follow the
same logic

Laundry cycles are modeled as the following:

If a laundry cycle = 7 days and downtime
(unavailability) = 2 days, then:

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

P(Available(i)) = (7-2) / 7 = 5 / 7 ≈ 71%

This temporal modeling helps enable realistic forecasting of
future outfit planning options and accounts for the dynamic
nature of wardrobe management in daily life.

IV. IMPLEMENTATION

The program has been designed using several important
criteria for analyzing outfit appropriate and relevantness, by
using contraints such as weather conditions, occasion
formality, color harmony, style compatibility, item availability,
and personal preferences. Combinatorial theory and constraint
satisfaction principles are used to systematically evaluate each
condition, enabling outfit recommendations to be generated in
the most effective way possible.

A. Import Modules

The program utilizes several essential Python libraries to
implement the combinatorial optimization system:

Module Functions:

• itertools: implements combinatorial functions product()
and combinations() for systematic outfit generation

• random: provides randomization for outfit sampling
and wardrobe simulation

• datetime & timedelta: manages temporal constraints
A(t,i) and usage tracking

 Image 4.1. Imported Modules

B. System Architecture

The system architecture of the program is divided into four
different components, consisting of the following:

1. Core Data Structures : this component consists of the
combinatorial elements representation that forms the
mathematical foundation of the wardrobe system.

2. Constraint Satisfaction Engine : this component implements
both hard and soft constraint validation to ensure outfit
appropriateness and quality ranking.

3. Combinatorial Generator : this component implements the
Rule of Product and combinations theory for systematic outfit
generation.

4. User Interface System : this component provides an
interactive recommendation interface that translates user
preferences into mathematical parameters and presents
optimized results in user-friendly formats.

 1. Core Data Structures

- ClothingItem Class

The ClothingItem class represents individual clothing
pieces as elements in combinatorial sets, with each
item containing attributes that serve as constraints in
the optimization process.

• Each item represents an element in the universal
wardrobe set W

• Availability implements temporal constraint
function A(t,i): W → {True, False}

• Formality level enables numerical constraint
evaluation from 1 to 10.

 Image 4.2. ClothingItem Class

- Wardrobe Class

The Wardrobe class implements the mathematical
structure W = {T, B, O, S, A} as organized disjoint
sets with efficient access patterns.

• add_item(item) : adds a new clothing item to
the wardrobe and assigns it to the appropriate
category.

• get_items_by_category(category) : returns
all items belonging to a specific clothing
category.

• get_available_items_by_category(category) :
returns only available items in a given
category

• mark_item_unavailable(item_id, reason) :
marks a specific item as unavailable and logs
the reason (for ecample: in laundry)

• get_statistics() : computes and returns
statistics on the total, available, and
unavailable items, grouped by category,
color, and style.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 Image 4.3. Wardrobe Class

2. Constraint Satisfaction Engine

This component implements both hard and soft constraint

validation to ensure outfit appropriateness and quality ranking.

Hard constraints include availability checking A(t,i), weather

compatibility validation, occasion formality requirements, and

color harmony rules that must be satisfied for valid

combinations. Soft constraints provide weighted scoring

mechanisms for preference matching and aesthetic quality

assessment, enabling multi-objective optimization through

scoring functions that rank outfits based on color harmony

(70% weight) and personal preferences (30% weight).

• _initialize_weather_rules(self)

This function defines weather-based constraints using

layer counting and item exclusion rules. The

mathematical constraint is implemented as

Layer_Count = |{item ∈ outfit : category(item) ∈

{tops, outerwear}}|, where Hot weather requires

Layer_Count ≤ 2 and Cold weather requires

Layer_Count ≥ 3, ensuring outfit appropriateness for

environmental conditions.

Image 4.4. Weather Constraints

• _initialize_occasion_rules(self)

This function establishes formality level constraints

and item requirements for different occasions using

numerical formality scales (1-10) with minimum and

maximum thresholds for occasion appropriateness.

Image 4.5. Occasion Formality Constraints

• _initialize_color_rules(self)

This function creates a compatibility matrix defining

which colors work harmoniously together, where

each color maps to a list of compatible colors with

any indicating universal compatibility. The function

implements relation C(color1, color2) → {True,

False} for pairwise color compatibility checking,

serving as the foundation for aesthetic color harmony

validation in outfit combinations.

 Image 4.6. Color Compatibility Matrix

• validate_hard_constraints(outfit, weather, occasion)

This function orchestrates sequential validation of all

hard constraints with early termination, using boolean

AND logic (∧) where all constraints must be satisfied

for outfit validity. The mathematical logic is

implemented as Valid(outfit) = A(outfit) ∧ W(outfit,

weather) ∧ O(outfit, occasion) ∧ C(outfit), ensuring

comprehensive constraint satisfaction before

proceeding to optimization scoring.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Image 4.7. Hard Constraints Validation

• _check_availability(outfit)

This function verifies that all items in the outfit are

currently available (not in laundry) and ready to be

used.

Image 4.8. Availability Checking Validation

• _check_weather_compatibility(outfit, weather)

This function ensures outfit appropriateness for

specified weather conditions through two-phase

validation: unsuitable item detection using string

matching and layer count verification against

min/max thresholds.

Image 4.9. Weather Constraint

• _ check_occasion_compatibility(outfit, occasion)

This function validates outfit formality level against

occasion requirements using statistical analysis by

calculating the arithmetic mean of item formality

levels and comparing against occasion-specific

thresholds.

Image 4.10. Occasion Constraint

• _ check_basic_color_compatibility(outfit)

This function ensures color harmony through

pairwise compatibility checking using the color

matrix, with special case handling for monochromatic

outfits (always valid) followed by exhaustive

pairwise comparison for multi-color outfits.

 Image 4.11. Color Compatibility Checking

• calculate_soft_constraint_score(outfit, weather,

occasion, preferences)

This function implements weighted multi-criteria

optimization for outfit quality ranking using a linear

combination of aesthetic quality (70%) and personal

preference alignment (30%). The mathematical

formula S(outfit) = 0.7 × S_color(outfit) + 0.3 ×

S_preference(outfit, preferences) balances objective

aesthetic principles with subjective user preferences,

enabling personalized outfit recommendations while

maintaining style coherence.

Image 4.12. Soft Constraints Validation

• _calculate_color_harmony_score(self, outfit)

Image 4.13. Calculate Color Aesthethic Analysis

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

• _calculate_preference_score(outfit, preferences)

This function quantifies alignment between outfit

characteristics and user preferences by calculating

match rates for preferred colors and styles, then

applying weighted bonuses to a base score.

 Image 4.14. Personal Preference Matching

3. Combinatorial Generation Engine

The OutfitGenerator class implements the

mathematical combinatorics principles for systematic outfit

exploration through three distinct phases. The generator uses

the Rule of Product and Combinations theory to create

comprehensive outfit possibilities while maintaining

computational efficiency through sequential constraint

application. This component is divided into three phases,

phase 1, phase 2, and phase 3.

Phase 1 consists of the basic combinations which

implements the fundamental Rule of Product |T| × |B| × |S|

where each outfit consists of one top, one bottom, and one

shoe. Using itertools.product(), the system generates all

possible three-item combinations. Each combination

undergoes immediate hard constraint validation for

availability, weather compatibility, occasion formality, and

color harmony before receiving soft constraint scoring.

Building on the continuation of phase 1, phase 2

consists of all the extended combinations which expands the

mathematical model to |T| × |B| × |O| × |S| by incorporating

outerwear items, generating a lot more possible combiinations.

This phase prioritizes weather-dependent scenarios where

additional layers are required, particularly for cool and cold

weather conditions. The four-element product demonstrates

the exponential growth of combinatorial possibilities while

maintaining systematic evaluation.

Lastly, phase 3 which consists of integrating

accessories into the system. This phase enriches the top-

ranked outfit combinations by applying combinatorial

selection using the formula C(n, r) to generate additional

styling options. To prevent combinatorial explosion, accessory

enhancement is selectively applied only to the top highest-

scoring base combinations.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Image 4.15. Combinatorial Generation Engine

4. User Interface System

The User Interface System is used as the interface component

that connects users with the underlying mathematical engine.

This component is responsible for things such as:

• Input Processing: receiving user inputs (weather,

occasion, color preferences) and converting them into

mathematical parameters for the optimization engine

• Command Management: managing interactive

commands (recommend/status/help/quit) with

comprehensive input validation

• Output Presentation: displaying recommendation

results in user-friendly formats, including outfit

scores (0-1.000), color or style analysis, and item

details

• System Monitoring: providing wardrobe status, item

availability statistics, and system performance

information

V. TESTING & RESULTS

 Image 5.1. Test Result 1

Test result 1 shows a successful implementation of
constraint-based combinatorial optimization. System was
shown processing a total of 36,504 possible combinations
in 0.128 seconds and identifying 2,716 valid outfits that
satisfy all hard constraints. For constraints cool weather,
business occasion and green preference scenario, the
system correctly applies weather constraints by including
outerwear layers, maintains business-appropriate formality
levels (4-5.75 average), and prioritizes green color
preferences in the optimization scoring. The top
recommendations achieve 0.917/1.000 scores through
effective color harmony (green-navy, green-brown
combinations).

 Image 5.2. Test Result 2

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Test Result 2 shows that the smart outfit planner has
successfully generated 7 formal outfit recommendations for hot
weather, based on user preferences for red and blue colors. Out
of 37,354 combinations, 128 valid outfits were found, and the
top ones were presented. The highest-ranked outfits (score:
0.872) included black blazers, formal bottoms, red
windbreakers, and navy loafers, perfectly aligning with both
the formal occasion and user’s color preferences. Overall, the
system demonstrated accurate filtering and color matching with
incredible speed.

VI. CONCLUSION

This paper has successfully demonstrated that

combinatorics, when integrated with constraint-based

optimization, offers a powerful and practical solution to the

everyday problem of outfit planning. By modeling wardrobe

selection as a combinatorial problem and applying both hard

and soft constraints, the system can effectively narrow down

millions of potential combinations into personalized, context-

aware recommendations. The results confirm that

combinatorial techniques not only improve decision-making

efficiency but also support sustainable wardrobe usage by

maximizing the value of existing clothing items. Thus,

combinatorics proves to be a valuable mathematical tool for

solving real-life optimization challenges in a structured,

effective and intelligent manner.

VII. APPENDIX

 The GitHub repository for this paper can be accessed at
https://github.com/nataliadesiany/MakalahMatdis.git . While
the video presentation of this paper is available on YouTube
and can be accessed at
https://youtu.be/A0huBY0gV18?si=EPK0RN-3vD_7LfZ0

VII. ACKNOWLEDGMENT

First and foremost, the author wishes to express heartfelt
gratitude to God Almighty for His blessings and grace, which
have made it possible to complete this paper on time. The
author would also like to express their deepest appreciation to
Dr. Ir. Rinaldi Munir, M.T., for his invaluable guidance and all
the knowledge he has shared throughout the IF2120 Discrete
Mathematics course. In addition, the author extends sincere
thanks to their parents for their unwavering support and
encouragement during the preparation of this paper. Lastly, the
author wishes to thank all readers of this paper and sincerely

hopes that the content presented will prove to be both useful
and insightful.

REFERENCES

[1] Munir, R. (2024). “Kombinatorika Bagian 1.”
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-
Kombinatorika-Bagian1-2024.pdf.

[Accessed: 17 June 2025].

[2] Munir, R. (2024). “Kombinatorika Bagian 2.”
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-
Kombinatorika-Bagian2-2024.pdf.

[Accessed: 17 June 2025].

[3] Yanuarsih, T., & Arifin, M. (2024). “Implementasi model machine
learning ‘Style Quest’ untuk rekomendasi pakaian berbasis kecerdasan
buatan.”
https://ejournal.penerbitjurnal.com/index.php/multilingual/article/view/8
46.

[Accessed: 17 June 2025].

[4] Hayuningtyas, R. Y. (2019). “Penerapan algoritma Naïve Bayes untuk
rekomendasi pakaian wanita.”

https://doi.org/10.31294/ji.v6i1.4685.

[Accessed: 17 June 2025].

[5] Tang, W., Tang, J., & Tan, C. (2010). “Expertise Matching via
Constraint-Based Optimization.” In 2010 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (Vol.
1, pp. 34–41).
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6e48
be7fb3484708151603b74f2ca55362610bc6.

[Accessed: 17 June 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Juni 2025

Natalia Desiany Nursimin

13523157

https://github.com/nataliadesiany/MakalahMatdis.git
https://youtu.be/A0huBY0gV18?si=EPK0RN-3vD_7LfZ0
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-Kombinatorika-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-Kombinatorika-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-Kombinatorika-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-Kombinatorika-Bagian2-2024.pdf
https://ejournal.penerbitjurnal.com/index.php/multilingual/article/view/846
https://ejournal.penerbitjurnal.com/index.php/multilingual/article/view/846
https://doi.org/10.31294/ji.v6i1.4685
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6e48be7fb3484708151603b74f2ca55362610bc6
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6e48be7fb3484708151603b74f2ca55362610bc6

